
A Literature Survey on Efficient Software Bug
Triaging Using Software Data Reduction

Techniques
Prof. Subhash Pingale#1, Prof. R.A.Taklikar#2, Ankita Godse#3

#ME Computer (Engineering), Dept. of Computer Science & Engineering, Solapur University,
SKN Sinhgad College of Engineering, Korti, Pandharpur, Maharashtra, India

Abstract— Large open source software projects receive
abundant rates of submitted bug reports. Triaging these
incoming reports manually is error-prone and time
consuming. The goal of bug triaging is to assign potentially
experienced developers to new-coming bug reports. To reduce
time and cost of bug triaging, work presents an automatic
approach to predict a developer with relevant experience to
solve the new coming report. The proposed work combines
instance selection with keyword selection to simultaneously
reduce data scale on the bug dimension and the word
dimension. To determine the order of applying instance
selection and keyword selection, extract attributes from
existing bug data sets and build a predictive model for a new
bug data set. In addition, work re-balances the load between
developers based on their experience; also priority level to the
new bug report will be assigned with ranking to the predicted
list of developers. Proposed work provides an approach to
leveraging techniques on data processing to form reduced and
high-quality bug data in software development and
maintenance.

Keywords— Bug triage, data reduction, Instance selection,
Keyword selection, Data Mining, Mining software repositories.

I. INTRODUCTION

Software repositories comprise valuable information
about software projects. This information can help to
manage the progress of these projects. One of the important
software repositories is the bug tracking system (BTS).
Many open source software projects have an open bug
repository that allows both developers and users to submit
defects or issues in the software. BTS to manage bug
reports submitted by users, testers, and developers.

Software companies spend over 45 percent of cost in
fixing bugs. Due to the daily-reported bugs, a large number
of new bugs are stored in bug repositories. There are two
challenges related to bug data that may affect the effective
use of bug repositories in software development tasks,
namely the large scale and the low quality. On one hand,
due to the daily-reported bugs, a large number of new bugs
are stored in bug repositories. On the other hand, software
techniques suffer from the low quality of bug data. Two
typical characteristics of low-quality bugs are noise and
redundancy. Noisy bugs may mislead related developers
while redundant bugs waste the limited time of bug
handling

A time-consuming step of handling software bugs is bug
triage, which aims to assign a correct developer to fix a new
bug. In traditional software development, new bugs are
manually triaged by an expert developer, i.e., a human
triager. Due to the large number of daily bugs and the lack
of expertise of all the bugs, manual bug triage is expensive
in time cost and low in accuracy.

Data reduction is the transformation of numerical or
alphabetical digital information derived empirically or
experimentally into a corrected, ordered, and simplified
form. The basic concept is the reduction of multitudinous
amounts of data down to the meaningful parts.

The proposed work addresses the problem of data
reduction for bug triage, i.e., how to reduce the bug data to
save the labor cost of developers and improve the quality to
facilitate the process of bug triage. Data reduction for bug
triage aims to build a small-scale and high-quality set of
bug data by removing bug reports and words, which are
redundant or non-informative. The work has the two goals
of data reduction as : Reducing the Data Scale & Improving
the Accuracy.

II. LITERATURE SURVEY

To avoid the expensive cost of manual bug triage, an
automatic bug triage approach was proposed, which applies
text classification techniques to predict developers for bug
reports. In this approach, a bug report is mapped to a
document and a related developer is mapped to the label of
the document. Then, bug triage is converted into a problem
of text classification and is automatically solved with
mature text classification techniques, e.g., Naive Bayes.
Based on the results of text classification, a human triager
assigns new bugs by incorporating his/her expertise. [2]

For a predicted list of developers by a classifier, in
Developer Prioritization developers were ranked by the
priorities. Thus, the developer prioritization is used to
discriminate the developers with similar probabilities in the
prediction. [3]

While in Profile Oriented Developer Recommendation
an approach where profile is created for each developer
based on his previous work. This profile is mapped to a
domain mapping matrix which indicates the expertise of
each developer in their corresponding area. [4]

To avoid low-quality bug reports in bug triage, a semi-
supervised classifier were trained by combining unlabeled
bug reports with labeled ones that improves the

Subhash Pingale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 875-877

www.ijcsit.com 875

classification accuracy with both the labeled and unlabeled
bug reports. To adjust bug triage, a weighted
recommendation list (WRL) is proposed to augment the
effectiveness of unlabeled bug reports. This WRL is
employed to probabilistically label an unlabeled bug report
with multiple relevant developers instead of a single
relevant developer. [5]

For the text representation and processing a concept of
distance graphs is proposed. Distance graphs represents the
document in terms of the distances between the distinct
words. The distance graph representation maintains
information about the relative placement of words with
respect to each other. Provide a much richer representation
in terms of sentence structure of the underlying data. [6]

Table 1: Literature Survey Table

Paper Proposed Conclusion

Who should fix this
bug? [2]

A semi-automated
approach uses a
supervised machine
learning algorithm
to suggest
developers who
may be qualified to
resolve the bug.

Based on the results
of text
classification, a
human triager
assigns new bugs
by incorporating
his/her expertise.

Developer
prioritization in bug
repositories [3]

For a predicted list
of developers by a
classifier,
developers were
ranked by the
priorities after bug
triage.

A task-based
developer
prioritization were
not applied in bug
repositories to
improve a specified
task with the
developer rankings.

Bug Triaging:
Profile Oriented
Developer
Recommendation
[4]

Here proposed an
approach where
profile is created for
each developer
based on his
previous work and
is mapped to a
domain mapping
matrix which
indicates the
expertise of each
developer in their
corresponding area.

It utilizes the
expertise profile of
developers
maintained in
Domain Mapping
Matrix (DMM).

Towards graphical
models for text
processing,”
Knowl. Inform.
Syst [6]

For the text
representation and
processing a
concept of distance
graphs is proposed.

The detail study of
the problems of
similarity search,
plagiarism
detection, and its
applications wasn’t
specified.

To investigate the quality of bug data, questionnaires to

developers and users in three open source projects was
designed. Based on the analysis of questionnaires, they
characterize what makes a good bug report and train a
classifier to identify whether the quality of a bug report
should be improved. [10]

III. SCOPE

The scope of proposed work as follows :
1. Assigning priority levels to the new bug report.
2. Assigning ranking to the predicted list of developers.
3. Instance selection can remove uninformative bug

reports
4.Keyword selection can remove uninformative words,

keyword selection improves the accuracy of bug
triage.

IV. PROPOSED SYSTEM

Fig 1: System Architecture

Fig. 1 illustrates the basic framework of bug triage based

on text classification. A bug data set contains bug reports
with respective developers. On this bug data set the bug
data reduction is applied as a phase in data preparation of
bug triage. Work combines existing techniques of instance
selection and keyword selection to remove certain bug
reports and words. A problem for reducing the bug data is
to determine the order of applying instance selection and
keyword selection, which is denoted as the prediction of
reduction orders.

A. Applying Instance Selection and Keyword Selection:

In bug triage, a bug data set is converted into a text matrix
with two dimensions, namely the bug dimension and the
word dimension. Work leverages the combination of
instance selection and keyword selection to generate a
reduced bug data set. Replace the original data set with the
reduced data set for bug triage. For a given data set in a
certain application, instance selection is to obtain a subset
of relevant instances (i.e., bug reports in bug data) while
keyword selection aims to obtain a subset of relevant words
in bug data. To distinguish the orders of applying instance
selection and keyword selection, we give the following
denotation. Given an instance selection algorithm IS and a
keyword selection algorithm KS, we use KS!IS to denote
the bug data reduction, which first applies KS and then IS;
on the other hand, IS!KS denotes first applying IS and then
KS. In Algorithm 1, we briefly present how to reduce the
bug data based on KS !IS. Given a bug data set, the output
of bug data reduction is a new and reduced data set. Two
algorithms KS and IS are applied sequentially.

Subhash Pingale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 875-877

www.ijcsit.com 876

B. Reduction Orders :

To apply the data reduction to each new bug data set,
need to check the accuracy of both two orders (KS!IS and
IS!KS) and choose a better one. To avoid the time cost of
manually checking both reduction orders, consider
predicting the reduction order for a new bug data set based
on historical data sets.

V. CONCLUSIONS

The proposed work presents an approach to
automatically assign bug reports to developers with the
appropriate expertise. The proposed work combines
keyword selection with instance selection to reduce the
scale of bug data sets as well as improves the data quality.
This work provides an approach for leveraging techniques
on data processing to form reduced and high-quality bug
data in software development and maintenance.

REFERENCES
[1] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Towards Effective

Bug Triage with Software Data Reduction Techniques,” IEEE
Transactions on Knowledge & Data Engineering, Vol. 27, No. 1,
JAN 2015.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in Proc. 28th Int. Conf. Softw. Eng., May 2006, pp. 361–370.

[3] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in Proc. 34th Int. Conf. Softw. Eng.(ICSE), 2012,
pp. 25–35.

[4] Anjali Sandeep Kumar Singh, “Bug Triaging: Profile Oriented
Developer Recommendation,” (IJIRAE) ISSN: 2349-2163 Volume
2 Issue 1 (January 2015).

[5] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic bug
triage using semi-supervised text classification,” in Proc. 22nd Int.
Conf. Softw. Eng. Knowl. Eng., Jul. 2010, pp. 209–214.

[6] C. C. Aggarwal and P. Zhao, “Towards graphical models for text
processing,” Knowl. Inform. Syst., vol. 36, no. 1, pp. 1–21, July
2012.

[7] G. Canfora and L. Cerulo. How software repositories can help in
resolving a new change request, in Workshop on Empirical Studies
in Reverse Engineering, 2005.

[8] J. Anvik, “Automating bug report assignment,” in Proc 28th
International Conference on Software Engineering. ACM, 2006, pp.
937–940.

[9] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training set
reduction for bug triage,” in Proc. IEEE 35th Annual Computer
Software and Applications Conference, Washington, DC, USA:
IEEE Computer Society, 2011, pp. 576–581.

[10] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter,
and C. Weiss, “What makes a good bug report?” IEEE Trans.
Softw. Eng., vol. 36, no. 5, pp. 618–643, Oct. 2010.

Subhash Pingale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 875-877

www.ijcsit.com 877

